
Chapter 8
Persistence, Competition, and Evolution

King-Yeung Lam and Yuan Lou

Abstract In this chapter we discuss some reaction–diffusion models for single
and multiple populations in spatially heterogeneous environments and advective
environments. Our goal is to illustrate some interesting, and perhaps surprising,
effects of spatial heterogeneity and diffusion on the population dynamics. Specific
topics include the logistic model, linear eigenvalue problem with indefinite weight,
Lotka–Volterra competition models, reaction–diffusion models in advective envi-
ronments, and the evolution of dispersal. We will introduce some basic tools for
reaction–diffusion equations such as the super-sub solution method, the variational
principle for principal eigenvalues, Lyapunov functionals, comparison principles for
parabolic equations and systems, etc. Some recent developments will be discussed.
In addition, problems with various difficulties ranging from elementary exercises to
open research questions will be presented.

8.1 Introduction

Understanding the population dynamics of a single and multiple interacting species,
which disperse in spatially heterogeneous environments, is an important topic in
spatial ecology. Reaction–diffusion models have played a major role in the modeling
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and understanding of population dynamics in heterogeneous environments [8]. In
this chapter we will restrict ourselves to a few selected topics in spatial ecology
and discuss some reaction–diffusion models for the persistence of a single species,
the competition of two populations, and the evolution of dispersal in spatially
heterogeneous environments and advective environments.

Our first goal is to illustrate some interesting, and perhaps surprising, effects of
spatial heterogeneity on the population dynamics. In Sect. 8.2 we will discuss the
logistic model, including the derivation of the continuous-time logistic model from
the discrete-time counterpart, a linear eigenvalue problem with indefinite weight,
and the maximization of the biomass of a single species at equilibrium. In Sect. 8.3
we will discuss the classical two-species Lotka–Volterra competition models, in
both homogeneous and heterogeneous environments. Section 8.4 is devoted to the
evolution of random dispersal in heterogeneous environments, where it is shown that
the slower dispersal rate will be selected. In Sect. 8.5 we will study the persistence of
a single species and the competition of two populations in advective environments.
We show that the faster dispersal rate could be selected in advective environments.

Another goal of this chapter is to introduce some basic mathematical tools
for reaction–diffusion equations and systems. They include the super-solution and
sub-solution method, the variational principle for principal eigenvalues, Lyapunov
functionals, linear stability analysis, and the comparison principles for parabolic
equations and systems. These materials will be covered in Sects. 8.2–8.5.

Beyond our two main goals, in Sect. 8.6 we will discuss some recent works and
point interested readers to the related literature. In addition, some mathematical
problems with various degrees of difficulties, ranging from elementary exercises
to open research questions, will also be presented.

8.2 Diffusion Models for a Single Species

The dynamics of reaction–diffusion models for a single species are not only of
independent interest, they are also building blocks in studying the dynamics of
multiple interacting species, especially issues concerning the invasions of exotic
species. In this section we focus on logistic type population models with diffusion.
Many reaction–diffusion models for a single population are of the form

⎧
⎨

⎩

ut = d�u+ uf (x, u) in �× (0,∞),

∇u · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x) in �.
(8.1)

Here u(x, t) is the population density, d > 0 is the diffusion coefficient, f (x, u)
represents the growth rate of the population and is differentiable in both x and u.
The habitat � is a bounded domain in Euclidean space R

N with smooth boundary
∂�, and n is the outward unit normal vector on ∂�. The zero Neumann boundary
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condition means that there is no net movement across the boundary. The initial
condition u0 is assumed to be non-negative and not identically zero.

We present two preliminary results on the dynamics of (8.1), adapted from [8].

Proposition 8.1 Suppose that f (x, u) ≤ g0(x) for some function g which is Hölder
continuous in Ω̄ . If the principal eigenvalue, denoted as σ1, of

{
dΔψ + g0ψ + σψ = 0 in Ω,
∇ψ · n = 0 on ∂Ω

(8.2)

is positive, then (8.1) has no positive steady state and all non-negative solutions of
(8.1) decay exponentially to zero as t → ∞.

Proof Let ψ(x) > 0 be an eigenfunction to σ1. Set u(x, t) = Ce−σ1tψ(x). Then u
satisfies

ut − d�u− uf (x, u) = g0(x)u− uf (x, u) ≥ 0.

Choose C > 0 large such that u(x, 0) ≤ u(x, 0). By the comparison principle for
parabolic equations [48], u(x, t) ≤ u(x, t) ≤ C‖ψ‖∞e−σ1t . �
Proposition 8.2 Suppose that there exists some C > 0 such that f (x, u) < 0 for
u ≥ C. If the principal eigenvalue, denoted as σ1, of

{
dΔψ + f (x, 0)ψ + σψ = 0 in Ω,
∇ψ · n = 0 on ∂Ω

(8.3)

is negative, then (8.1) has at least one positive steady state.

Proof Consider the steady state problem of (8.1), i.e.,

{
d�u+ uf (x, u) = 0 in �,
∇u · n = 0 on ∂�.

(8.4)

Write f (x, u) = f (x, 0)+f1(x, u) so that f1(x, u) = O(u) for small u. Let ψ > 0
be an eigenfunction to σ1. For sufficiently small ε > 0,

d�(εψ)+ (εψ)f (x, εψ) = εψ[−σ1 + f1(x, εψ)] > 0,

i.e., u = εψ is a sub-solution of (8.4). Since u = C is a super-solution of (8.4) and
for small ε we have u ≥ u, by the super-solution and sub-solution method [48] we
see that (8.1) has a positive steady state u(x) such that u(x) ≤ u(x) ≤ u(x) for
x ∈ �. �
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A classic example of f (x, u) in (8.1) is the logistic growth model:

f (x, u) = r(x)

(

1 − u

K(x)

)

, (8.5)

where r(x),K(x) ∈ C(�) are positive functions.

Exercise Consider problem (8.1). If f (x, u) < g0(x) for x ∈ � and u > 0, and that
the principal eigenvalue σ1 of (8.2) is non-negative, then all non-negative solutions
of (8.1) decay to zero as t → ∞ (albeit not necessarily exponentially).

8.2.1 Logistic Model: From Discrete to Continuous

In this subsection we present a derivation of the logistic model from discrete-time
models. The continuous-time logistic ODE model (Verhulst, 1838) is given by

dN

dt
= rN(1 − N

K
), t > 0. (8.6)

Here r and K are two positive constants: r is the intrinsic growth rate (1/time), and
K is the carrying capacity (same unit as population size).

One way to derive (8.6) is to start with discrete-time models. Let Nt denote the
population size at time t = 0, 1, 2, · · · . The general model is usually of the form
Nt+1 = f (Nt), where f is the growth function.

The geometric growth model is given by Nt+1 = RNt , where the biological
meaning of parameter R can be seen from

R = Nt+1

Nt
= numbers of offsprings

numbers of parents
. (8.7)

For the geometric model, Nt/Nt+1 = 1/R, i.e., the parent vs offspring ratio is
constant. The next level of models in terms of modeling complexity is

Nt

Nt+1
= a linear function of Nt . (8.8)

When Nt ≈ 0 (Nt is rare), we expect the geometric model to be a good
approximation, so that Nt

Nt+1
= 1

R
. When Nt ≈ K (Nt is near the carrying capacity),

we expect the population to level off, so that Nt
Nt+1

= 1. Hence,

Nt

Nt+1
= the line passing through (0,

1

R
) and (K, 1) (8.9)

= 1

R
+ Nt

K

(

1 − 1

R

)

. (8.10)
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After simplification, one obtains the Beverton–Holt model

Nt+1 = RNt

1 + R−1
K
Nt
, t = 0, 1, 2, · · · , (8.11)

where the constant K is the population size at which the parent vs offspring ratio is
equal to one.

In the derivation above, the duration of each generation is 1. Now, if we let
the duration of each generation to be some small constant h > 0, then over the
(short) time interval h, the population multiplies by a factor of Rh, and thus we may
modify (8.11) as

Nt+h = RhNt

1 + Rh−1
K

Nt
, h > 0.

We can rewrite the above as

Nt+h −Nt

h
= 1

h

(
RhNt

1+Rh−1
K Nt

−Nt

)

(8.12)

= 1
h

· (Rh−1)Nt−Rh−1
K

N2
t

1+Rh−1
K Nt

(8.13)

= Rh−1
h

· (1−Nt
K )Nt

1+Rh−1
K Nt

. (8.14)

Letting h → 0, we obtain the continuous-time logistic model, which relates the
instantaneous rate of change of population at time t to the population at time t:

d

dt
Nt = rNt (1 − Nt

K
), t > 0, (8.15)

where r = logR.

Exercise Use the discrete-time two-species model

⎧
⎨

⎩

N1(t + 1) = R1N1(t)
1+α1N1(t)+β1N2(t)

N2(t + 1) = R2N2(t)
1+α2N1(t)+β2N2(t)

(8.16)

to derive the corresponding continuous-time model

⎧
⎨

⎩

dN1
dt

= r1N1(1 − C1N1 −D1N2)

dN2
dt

= r2N2(1 − C2N1 −D2N2)

. (8.17)
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8.2.2 Logistic PDE Model

We consider a special case of the reaction–diffusion model (8.1) with logistic
nonlinearity (8.5) and heterogeneous coefficients r(x) = m(x) and K(x) = m(x):

⎧
⎨

⎩

ut = d�u+ u(m(x)− u) in �× (0,∞),

∇u · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x) in �.
(8.18)

Another example is to add spatially heterogeneous harvesting effect to the
logistic nonlinearity ru(1 − u

K
) with constant coefficients r,K , so that the growth

function of the population is given by

r(1 − u

K
)− h(x) = r − h(x)− r

K
u;

i.e., m(x) = r − h(x) in this example, where h(x) is the harvesting rate.
By Propositions 8.1 and 8.2, the problem of determining the existence and

non-existence of positive steady state is connected with the sign of the principal
eigenvalue σ1 (i.e., the unique eigenvalue possessing a positive eigenfunction) of

{
d�ψ +m(x)ψ + σψ = 0 in �,
∇ψ · n = 0 on ∂�.

(8.19)

By the variational characterization of elliptic eigenvalues, we have

σ1 = inf
ψ∈H 1(�),ψ 
=0

∫

�
[d|∇ψ|2 −m(x)ψ2] dx

∫

�
ψ2 dx

,

one can deduce the following result. (See, e.g., Proposition 4.4 of [47].)

Lemma 8.1 Suppose that m is non-constant. Then σ1 is a strictly monotone
increasing function of d . Moreover,

lim
d→0

σ1 = − maxΩ̄ m, (8.20)

lim
d→∞ σ1 = − 1

|Ω|
∫

Ω m. (8.21)

Furthermore, the mapping d �→ σ1 is concave.

Exercise Prove Lemma 8.1.

By Lemma 8.1, we see that if
∫

� m ≥ 0, then σ1 < 0 for any d > 0. Hence,
by Proposition 8.2, (8.18) has at least one positive steady state for any d > 0. If∫

� m < 0 and max�̄ m > 0, by Lemma 8.1 there exists a unique d∗∈ (0,+∞) such
that σ1 < 0 for d < d∗; and σ1 > 0 when d > d∗. Again by Propositions 8.1 and 8.2
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we see that if d > d∗, then every non-negative solution of (8.18) converges to zero;
if d < d∗, then (8.18) has at least one positive steady state. These discussions lead
to the following result. (See, e.g., Proposition 3.3 of [8] or Theorem 4.1 of [47].)

Theorem 8.1 Suppose thatm is non-constant, positive somewhere inΩ and Hölder
continuous in Ω̄ .

(i) If
∫

Ω
m ≥ 0, then for d > 0, (8.18) has a unique positive steady state and

it is globally asymptotically stable among non-negative, not identically zero,
continuous initial data.

(ii) If
∫

Ω
m < 0 and maxΩ̄ m > 0, then there exists some d∗ > 0 such

that if d < d∗, (8.18) has a unique positive steady state which is globally
asymptotically stable; if d > d∗, all non-negative solutions of (8.18) converge
to zero as t → ∞.

The existence and non-existence results are addressed by the discussion preced-
ing Theorem 8.1. We now sketch the proof of the uniqueness of the positive steady
state, whenever it exists. The proof of the uniqueness of positive steady state is based
upon the super-solution and sub-solution method. For this purpose, we consider the
steady state problem of (8.18):

{
d�u+ u(m(x)− u) = 0 in �,
∇u · n = 0 on ∂�.

(8.22)

We say that u ∈ C2(�̄) is a super-solution of (8.22) if it satisfies
{
d�u+ u(m− u) ≤ 0 in �,
∇u · n ≥ 0 on ∂�.

(8.23)

We can similarly define the sub-solution of (8.22) by reversing the inequalities. The
following comparison principle is well known. (See, e.g., [50, 51].)

Theorem 8.2 Suppose that (8.22) has a pair of super-solution and sub-solution
such that u ≤ u in Ω . Then (8.18) has a minimal steady state um and a maximal
steady state uM , such that (i) u ≤ um ≤ uM ≤ u in Ω and (ii) for each solution v
of (8.22) satisfying u ≤ v ≤ u in Ω , then it must hold that um ≤ v ≤ uM in Ω .

We proceed to sketch the proof of the uniqueness result, as claimed in Theo-
rem 8.1. Suppose, for contradiction, that there are two distinct positive steady states
when σ1 < 0, denoted by ui , i = 1, 2. Since Eq. (8.22) has arbitrary large super-
solutions (e.g., any constantC larger than the maximum of functionm) and arbitrary
small positive sub-solutions, e.g., εψ , where ε > 0 is small and ψ > 0 is an
eigenfunction of (8.19), we can choose ε and C such that εψ ≤ u1, u2 ≤ C. Hence,
by Theorem 8.2, there exists a minimal solution and a maximal solution, denoted
by um and uM , respectively, satisfying um ≤ u1, u2 ≤ uM in �. Since u1 
≡ u2, we
have uM ≥, 
≡ um. Multiplying the equation of um by uM , the equation of uM by
um, subtracting and integrating the result in �, we see that
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∫

�

umuM(uM − um) = 0,

which is a contradiction to the fact that uM ≥ um and uM 
≡ um. Hence it is
impossible for Eq. (8.22) to have two distinct positive solutions u1, u2. This proves
the uniqueness result.

8.2.3 An Eigenvalue Problem with Indefinite Weight

Recall that by Theorem 8.1, there exists a critical diffusion rate d∗ > 0 so
that the population as modeled by (8.18) persists if and only if d ∈ (0, d∗). In
this subsection, we will give a characterization of 1/d∗ via the following linear
eigenvalue problem with indefinite weight:

{
�ϕ + λm(x)ϕ = 0 in �,
∇ϕ · n = 0 on ∂�.

(8.24)

Problem (8.24) and its variants have been extensively investigated for the last two
decades, since they play crucial roles in studying nonlinear models from population
biology.

We call λ a principal eigenvalue of (8.24) if λ has a positive eigenfunction ϕ ∈
H 1(�). Clearly, λ = 0 is a principal eigenvalue of (8.24) with positive constants
as its eigenfunctions. Of particular importance is the existence of positive principal
eigenvalues.

If (8.24) has a positive eigenvalue, denoted by λ1(m), with corresponding
positive eigenfunction ϕ1, integrating the equation of ϕ1 we have

∫

�

mϕ1 = 0,

which implies that m(x) changes sign in �, i.e., that both �+ and �− have positive
Lebesgue measure, where

�+ = {x ∈ � : m(x) > 0} , �− = {x ∈ � : m(x) < 0} .

Dividing the equation of ϕ1 by ϕ1 and then integrating in �, we find

λ1(m)

∫

�

m =
∫

�

�ϕ

ϕ
= −

∫

�

|∇ϕ1|2
ϕ2

1

< 0

since ϕ1 is not equal to any positive constant (as m is not identically equal to any
constant). In summary, the condition
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(A1) The set �+ has positive Lebesgue measure, and
∫

� m < 0

is necessary for the existence of a positive principal eigenvalue. This condition turns
out to be also sufficient as shown by the following result [3]:

Theorem 8.3 The eigenvalue problem (8.24) has a positive principal eigenvalue
(denoted by λ1(m)) if and only if (A1) holds. Moreover, λ1(m) is the only positive
principal eigenvalue and it is simple; it is also the smallest positive eigenvalue of
(8.24), and is given by

λ1(m) = inf
ϕ∈S (m)

∫

Ω
|∇ϕ|2

∫

Ω
m(x)ϕ2 , (8.25)

where

S (m) :=
{

ϕ ∈ H 1(Ω) :
∫

Ω

m(x)ϕ2 > 0

}

.

By Theorem 8.3, one may observe that d∗ in Theorem 8.1 is characterized by
d∗ = 1/λ1(m). In fact, the following well-known and useful result holds.

Proposition 8.3 Suppose that (A1) holds. Let d∗ := 1/λ1(m), where λ1(m) is the
principal eigenvalue of (8.24). Then d∗ > 0. Furthermore, let σ1(d,m) be the
principal eigenvalue of (8.19). Then

(i) σ1(d,m) < 0 when 0 < d < d∗;
(ii) σ1(d,m) = 0 when d = d∗;

(iii) σ1(d,m) > 0 when d > d∗.

Exercise Prove Proposition 8.3 using the facts that (i) σ1(d,m) is concave in d; and
that (ii) σ1(d,m) = 0 if and only if d = d∗.

Consider the scenario where there is limited total resource in a bounded domain
�. What is the optimal way to distribute the resource, so as to maximize the
survivorship of the population?

Given μ ∈ (0, 1) and κ > 0, we define

M = {
m ∈ L∞(�) : m(x) satisfies (A1) and (A2)

}
, (8.26)

where (A2) is the constraint on the resource distribution:

(A2) −1 ≤ m(x) ≤ κ a.e. in �, and
∫

� m ≤ −μ|�|.
Roughly speaking, (A2) says that the habitat is unfavorable on average. Also, the
resource distribution is bounded from above by κ , and below by −1. We aim to
determine the optimal arrangement of the resource so as to maximize d∗, which is
equivalent to minimizing λ1(m). Therefore, we set
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λinf := inf
m∈M

λ1(m).

The existence and the profile of global minimizers of λ1(m) in M with Dirichlet
boundary condition was first addressed in [4]. For Neumann boundary conditions,
we have the following result [40]:

Theorem 8.4 The infimum λinf is attained by somem ∈ M . Moreover, if λ1(m) =
λinf , then m can be represented as m(x) = κχE − χΩ\E a.e. in Ω for some
measurable set E ⊂ Ω .

Proof We only prove the second part of Theorem 8.4. Suppose that m ∈ M and
λ1(m) = λinf . Let ϕ be the eigenfunction of λ1(m)with the normalization sup� ϕ =
1. For every η ≥ 0, set Eη := {x ∈ � : ϕ(x) > η}. Note that |Eη|, the Lebesgue
measure of Eη, is a monotone decreasing function of η, |E0| = |�| and |Eη| = 0
for η > 1.

Case 1. There exists some η∗ > 0 such that

−μ|�| = κ |Eη∗ | − |� \ Eη∗ |, (8.27)

i.e., |Eη∗ | = (1 − μ)|�|/(1 + κ) > 0. For this case, define E∗ := Eη∗ .
Case 2. There is no η > 0 such that |Eη| = (1−μ)|�|/(1+κ). For this case, there

exists some η∗ > 0 such that limη→η∗+ |Eη| < (1 − μ)|�|/(1 + κ) ≤
limη→η∗− |Eη|. Therefore, there exists some measurable set E∗ such that
Eη∗ ⊂ E∗ ⊂ {x ∈ � : ϕ(x) ≥ η∗} and |E∗| = (1 − μ)|�|/(1 + κ).

Define m∗(x) = κχE∗ − χ�/E∗ . Equation (8.27) ensures that
∫

�
m∗ = −μ|�|.

Hence, we have m∗ ∈ M , which implies that λinf ≤ λ1(m
∗).

We claim that m(x) = m∗(x) a.e. in �. To establish our assertion, we first have

∫

�
(m∗ −m)ϕ2 = ∫

E∗(κ −m)ϕ2 − ∫

�\E∗(1 +m)ϕ2

≥ (η∗)2
∫

E∗(κ −m)− (η∗)2
∫

�\E∗(1 +m)

≥ 0,

(8.28)

where the last inequality follows from (8.27) and
∫

�
m ≤ −μ|�|. Since

∫

�
mϕ2 >

0, we have
∫

� m
∗ϕ2 > 0. Hence, ϕ ∈ S (m∗). Therefore, applying (8.25) we have

λ1(m
∗) ≤

∫

� |∇ϕ|2
∫

� m
∗ϕ2

≤
∫

� |∇ϕ|2
∫

� mϕ
2

= λ1(m). (8.29)
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Since λ1(m) = λinf ≤ λ1(m
∗), equalities must hold in (8.29). In particular,

λ1(m
∗) = λ1(m) and

λ1(m
∗) =

∫

� |∇ϕ|2
∫

� m
∗ϕ2

.

Therefore, from Theorem 8.3 we see that ϕ is also an eigenfunction of λ1(m
∗), and

it satisfies

�ϕ + λ1(m
∗)m∗ϕ = 0 in �, ∇ϕ · n = 0 on ∂�

in W 2,q (�) for every q > 1. Since ϕ > 0 in �, we have

m∗ = − �ϕ

λ1(m∗)ϕ
= − �ϕ

λ1(m)ϕ
= m

a.e. in �. This completes the proof of Theorem 8.4. �
Remark 8.1 Theorem 8.4 implies that the global minimizers of λ1(m) in M are of
“bang-bang” type, i.e., when the habitat is unfavorable on average, the survivorship
of the population is maximized when conservational effort and resources are
concentrated within a protection zone, even when the rest of the habitat is in
poor condition. The original proof of Theorem 8.4 in [40] requires the additional
assumption that Eη is continuous in η. The modified proof presented here does not
make use of this assumption; see also [46]. We refer to [30] for the case when � is
a rectangular domain in R

2.

8.2.4 Population Size

In this subsection we study the effects of dispersal and spatial heterogeneity of the
environment on the total population size of a single species. Such a consideration is
not only out of curiosity, but also useful in studying the invasion of species.

Consider the steady state problem of the diffusive logistic model:

⎧
⎨

⎩

d�θ + θ
[
m(x)− θ

] = 0 in �,

θ > 0 in �,

∇θ · n = 0 on ∂�,

(8.30)

where the diffusion rate d is assumed to be a positive constant, m(x) is the habitat
quality at location x, and the function θ = θ(x, d) represents the density of the
species at location x. For the sake of clarity we posit

(A3) m(x) is non-constant, bounded, and measurable, and
∫

�
m(x) dx > 0.
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For solutions of (8.30), the following results are well known.

Theorem 8.5 Suppose that assumption (A3) holds.

(i) For d > 0, (8.30) has a unique positive solution θ(x, d) such that θ ∈
W 2,p(Ω) for every p ≥ 1.

(ii) As d → 0+, θ(x, d) → m+(x) in Lp(Ω) for every p ≥ 1, where m+(x) =
sup{m(x), 0}; as d → ∞, θ(x, d) → 1

|Ω|
∫

Ω m(x) dx in W 2,p(Ω) for every
p ≥ 1.

(iii) If m(x) is Hölder continuous in Ω , then θ ∈ C2(Ω̄). Moreover, θ(x, d) →
m+(x) in L∞(Ω) as d → 0, and θ(x, d) → 1

|Ω|
∫

Ω m(x) dx in C2(Ω) as
d → ∞.

Proof We only illustrate that if m ∈ C(�̄) and m > 0, then θ(x, d) → m(x) in
L∞(�) as d → 0. Given any ε > 0, choose u ∈ C2(�̄) such that ∇u · n = 0 on
∂�, and

m+ ε

2
≤ u(x) ≤ m+ ε for x ∈ �̄.

Then,

d�u+ u(m− u) ≤ d�u+ u(m−m− ε

2
) = d�u− ε

2
u ≤ d�u− ε2

4
≤ 0

in �, where the last inequality holds if d is chosen sufficiently small. Hence, u is a
super-solution of (8.30). Similarly, choose u ∈ C2(�̄) such that m − ε ≤ u(x) ≤
m − ε

2 for any x ∈ �̄, and ∇u · n = 0 on ∂�. One can proceed similarly to show
that u is a sub-solution for small d . Hence by the super-solution and sub-solution
method [48],

m− ε ≤ u(x) ≤ lim inf
d→0+ θ(x, d) ≤ lim sup

d→0+
θ(x, d) ≤ u(x) ≤ m+ ε

holds in �. Finally, the conclusion follows from letting ε → 0+. �
Exercise If � = (0, 1) and mx > 0 in [0, 1], show that θx > 0 in (0, 1).

Exercise Suppose that m is non-constant and m ∈ C1(�̄). Show that
∫

� |∇θ |2 dx
is a strictly decreasing function of d and for any d > 0,

∫

�

|∇θ |2 dx <
∫

�

|∇m|2 dx. (8.31)

Since |∇θ | measures the steepness of the population density distribution, we may
envision

∫

�
|∇θ |2 as the average steepness of the population distribution. Similarly,

∫

� |∇m|2 measures the average steepness of the environmental gradient. This result
suggests that the population distribution becomes flatter in average if we increase the
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dispersal rate. In particular, (8.31) shows that the population distribution is always
less steep than the environmental gradient, at least in some average sense.

Open Problem Is
∫

�(θ−θ)2 dx monotone decreasing in d , where θ = |�|−1
∫

� θ?
Are max�̄ θ and min�̄ θ also monotone in d? Is ‖θ‖Lp monotone decreasing in d
for large p?

Remark 8.2 For a fixed m ∈ Cα(�̄) where α ∈ (0, 1), is it true that there exists
some positive constantC, which is independent of d , such that ‖θ(·, d)‖Cα(�̄) ≤ C?

Averill et al. [1] showed that if m ∈ C2(�̄) and m ≥ 0 in �̄, then θd → m in
W 1,2(�).

In view of part (ii) of Theorem 8.5, it is natural to introduce the function

F(d) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫

� m+(x) dx, d = 0,
∫

� θ(x, d)dx, d > 0,
∫

�
m(x) dx, d = ∞,

(8.32)

which can be interpreted as the total population size of the species. By assumption
(A2) and part (ii) of Theorem 8.5, F is a continuous, positive function in [0,∞].

If the spatial environment is homogeneous, i.e., m(x) is equal to some positive
constant m, then θ(x, d) ≡ m is the unique positive solution of (8.30) for every
d > 0. In this case, the total population size of the species is given by F(d) = |�|m,
which is independent of d . However, if the spatial environment is heterogeneous,
i.e., m(x) is a non-constant function, the story changes dramatically:

Theorem 8.6 ([37]) Suppose that assumption (A1) holds.

(i) F(d) > F(∞) for every d ∈ (0,∞);
(ii) If m(x) ≥ 0 in Ω , then for d ∈ (0,∞), F(d) satisfies

F(0) = F(∞) < F(d).

Proof Divide the equation of θx by θ ,

d
�θ

θ
+m− θ = 0.

Integrating the above in �, we have

∫

�

θ −
∫

�

m = d

∫

�

|∇θ |2
θ2 > 0;

i.e.,
∫

�
θ >

∫

�
m. The rest of the proof follows from the limiting behaviors of θ as

d → 0 and d → ∞, as stated in Theorem 8.5. �
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Remark 8.3 Part (i) of Theorem 8.6 implies that spatial heterogeneity increases the
population size of species. To make this assertion precise, setm = ∫

�
m(x) dx/|�|,

and write F = F(d,m) instead of F(d) to indicate the dependence of F on the
function m. Part (a) implies that F(d,m) > F(d,m) for every d > 0. In other
words, given any d > 0 and any function g with

∫

�
g(x) dx = 0 and g 
≡ 0, we

have F(d,m + λg) > F(d,m) for every λ 
= 0. Hence, with the dispersal rate
being fixed, the population size F(d,m + λg), as a function of λ ∈ R, attains a
strict global minimum at λ = 0. We refer to [14] and the references therein for more
recent developments.

Exercise Compute F(d,m+ τg) for small τ . What conclusion can you draw from
it?

Part (ii) of Theorem 8.6 implies that when m(x) is non-negative, the total
population size is minimized at d = 0 and d = ∞, and maximized at some
intermediate value d∗. The value of d∗ is determined by the habitat� and m(x).

It will be of interest to understand the precise shape of F(d) due to its crucial
role in the invasion of species. A natural conjecture is that F(d) has a unique
local maximum (and thus it must be the global maximum) in (0,+∞). However,
this conjecture is false even for the case when m(x) is a perturbation of positive
constants.

Theorem 8.7 ([36]) There exists a smooth function g(x) with
∫

Ω
g = 0 such that

if m = 1 + εg, then for sufficiently small non-zero constant ε, the total population
F(d,m) = ∫

Ω
θ(x, d) dx, as a function of d , has at least two local maxima and one

local minimum in (0,∞).

An important issue in conservation biology is to determine how resource
allocation affects the population dynamics of species. As the population abundance
is often a good measurement of conservation effort, it is of interest to know how
resource allocation affects the total population size of species.

Assume that m is non-negative and not identically zero. Let θ(x) denote the
unique positive steady state of (8.18). Given any δ ∈ (0, 1), define

U =
{

m ∈ L∞(�) : 0 ≤ m ≤ 1,
∫

�

m(x) dx = δ|�|
}

and

J (m) =
∫

�

θ(x) dx. (8.33)

It is shown in [15] that there exists some m∗ ∈ U such that

J (m∗) = max
m∈U J (m).
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It seems that the shape of the optimal control m∗ depends upon the magnitude
of parameter δ. For instance, numerical simulations indicate that for rectangular
domains, the optimal control m∗ is concentrated at one of the corners of the
rectangle when δ is small; if δ is large, the optimal control concentrates at a
boundary edge of the rectangle. We refer to [15] for further discussions.

Recently Bai et al. [2] proved the following conjecture of W.-M. Ni:

Theorem 8.8 Suppose that Ω is an interval in R
1. Then

∫

Ω
θ(x) dx

∫

Ω
m(x) dx

< 3. (8.34)

Furthermore, 3 is the optimal constant.

Proof Without loss of generality assume that � = (0, 1). For simplicity we only
prove (8.34) when mx ≥ 0. For this case, we have θx ≥ 0 (see exercise after
Theorem 8.5). Multiplying (8.30), the equation of θ , by θx and integrating the result
in (0, x) we obtain

d

2
θ2
x (x) =

∫ x

0
θxθ(θ −m) dx ≤

∫ x

0
θxθ

2 = 1

3
[θ3(x)− θ3(0)] < 1

3
θ3(x).

Hence,

dθ2
x (x) <

2

3
θ3(x), x ∈ [0, 1]. (8.35)

Next, dividing the equation of θ by θ we have

d
θxx

θ
+m− θ = 0.

Integrating the above equation in (0, 1) we have

∫ 1

0
θ dx −

∫ 1

0
mdx = d

∫ 1

0

θ2
x

θ2
dx <

2

3

∫ 1

0
θ dx,

where we applied (8.35) in the last inequality. Hence, (8.34) holds. �
Open Question (W.-M. Ni) Show that there exists some positive constant C =
C(N) > 1, which only depends on the spatial dimension N ≥ 2, such that for any
positive solution θ ,

∫

�

θ(x) dx < C(N)

∫

�

m(x) dx. (8.36)
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Exercise Let (u1, u2) be a positive solution of the two patch model

{
d(u2 − u1)+ u1(m1 − u1) = 0,
d(u1 − u2)+ u2(m2 − u2) = 0,

(8.37)

wherem1,m2 > 0. Show that

1 ≤ u1 + u2

m1 +m2
< 2.

8.3 Lotka–Volterra Competition Models

For the last two decades there has been tremendous interest, from both math-
ematicians and ecologists, in two-species Lotka–Volterra competition models in
spatially heterogeneous environments; see [5–7, 9–11, 21–25, 27–29, 34, 47] and
the references therein. Our main goal here is to illustrate some differences between
the dynamics of Lotka–Volterra competition models in homogeneous environments
and that in heterogeneous environments.

8.3.1 Homogeneous Environments

We first consider the Lotka–Volterra competition–diffusion system in homogeneous
environments:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d1�u+ u(a1 − b1u− c1v) in �× (0,∞),

vt = d2�v + v(a2 − b2u− c2v) in �× (0,∞),

∇u · n = ∇v · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �.

(8.38)

Here u, v represent the population densities of two competing species; d1, d2 are
their diffusion rates; a1 and a2 are their intrinsic growth rates; b1 and c2 are the
intra-specific competition coefficients and b2, c1 are the inter-specific competition
coefficients. All constants are assumed to be positive, and u0(x), v0(x) are non-
negative functions that are not identically equal to zero.

Under the assumption

b1

b2
>
a1

a2
>
c1

c2
, (8.39)
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(8.38) has a unique positive steady state, given by

(u∗, v∗) =
(
a1c2 − a2c1

b1c2 − b2c1
,
b1a2 − b2a1

b1c2 − b2c1

)

. (8.40)

It turns out that (u∗, v∗) is globally asymptotically stable:

Theorem 8.9 Suppose that (8.39) holds. Then for any non-negative and not
identically zero initial data u(x, 0), v(x, 0) ∈ C(Ω̄),

lim
t→∞(u(x, t), v(x, t)) = (u∗, v∗)

in C(Ω̄)× C(Ω̄) norm.

Proof Consider the following system of ordinary differential equations:

⎧
⎨

⎩

Ut = U(a1 − b1U − c1V ) in (0,∞),

Vt = V (a2 − b2U − c2V ) in (0,∞),

U(0) > 0, V (0) > 0.
(8.41)

We claim that for any initial data U(0) > 0, V (0) > 0,

lim
t→∞(U(t), V (t)) = (u∗, v∗). (8.42)

To establish our assertion, define

E(t) = b2

(

U − u∗ − u∗ ln
U

u∗

)

+ c1

(

V − v∗ − v∗ ln
V

v∗

)

. (8.43)

Then dE/dt ≤ 0 and dE/dt = 0 if and only if (U, V ) = (u∗, v∗). Since E(t) is
also bounded from below, by the LaSalle’s invariance principle, (8.42) holds.

By the maximum principle, we have u(x, t), v(x, t) > 0 for any x ∈ �̄ and
t > 0. Without loss of generality we assume that u(x, 0) > 0 and v(x, 0) > 0 in �̄.

Let (U, V ) be the solution of

⎧
⎪⎪⎨

⎪⎪⎩

Ut = U(a1 − b1U − c1V ) in (0,∞),

V t = V (a2 − b2U − c2V ) in (0,∞),

U(0) = minx∈�̄ u(x, 0) > 0,
V (0) = maxx∈�̄ v(x, 0) > 0;

(8.44)
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and let (U, V ) be the solution of

⎧
⎪⎪⎨

⎪⎪⎩

Ut = U(a1 − b1U − c1V ) in (0,∞),

V t = V (a2 − b2U − c2V ) in (0,∞),

U(0) = maxx∈�̄ u(x, 0) > 0,
V (0) = minx∈�̄ v(x, 0) > 0.

(8.45)

Note that (U, V ) and (U, V ) satisfy (8.38). Since

U(0) ≤ u(x, 0) ≤ U(0), V (0) ≤ v(x, 0) ≤ V (0)

by the comparison principle for two-species competition model (8.38) [50],

U(t) ≤ u(x, t) ≤ U(t), V (t) ≤ v(x, t) ≤ V (t)

hold for all x ∈ �̄ and t ≥ 0.
By (8.41) and (8.42),

lim
t→∞(U(t), V (t)) = lim

t→∞(U(t), V (t)) = (u∗, v∗). (8.46)

Therefore, (u(x, t), v(x, t)) → (u∗, v∗) uniformly in x as t → ∞. �

8.3.2 Competition in Heterogeneous Environment

The semilinear parabolic system

⎧
⎪⎪⎨

⎪⎪⎩

ut = d1�u+ u[m(x)− u− bv] in �× (0,∞),

vt = d2�v + v[m(x)− cu− v] in �× (0,∞),

∇u · n = ∇v · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �

(8.47)

models two species that are competing for the same resources, where u(x, t) and
v(x, t) represent the population densities of two competing species with respective
dispersal rates d1 and d2, the function m(x) represents their common intrinsic
growth rate, and b and c are inter-specific competition coefficients. We shall assume
that d1, d2, b, and c are positive constants, and u0(x), v0(x) are non-negative
functions that are not identically equal to zero.

We say that a steady state of (8.47) is a coexistence state if both components are
positive, and it is a semi-trivial state if one component is positive and the other is
zero. Under (A3), (8.47) has exactly two semi-trivial states, denoted by (θd1, 0) and
(0, θd2), where θd = θ(·, d) is the unique positive solution of (8.30).
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We assume that 0 < b, c < 1. If m(x) ≡ m for some positive constant m, by
Theorem 8.9, every solution (u, v) of (8.47) converges to ( 1−b

1−bcm,
1−c

1−bcm) for all
diffusion rates d1, d2 and any initial data. However, the dynamics of (8.47) is less
transparent when m is non-constant. To this end, we start by studying the stability
of the semi-trivial steady state (θd1, 0) of (8.47). For the rest of this subsection, we
focus on the case 0 < c < 1.

Theorem 8.10 ([37]) If (A3) holds andm(x) is non-negative, then there exists some
constant c∗ = c∗(m,Ω) ∈ (0, 1) such that the followings hold:

(a) For c ∈ (0, c∗), (θd1, 0) is unstable for any d1, d2 > 0.
(b) For c ∈ (c∗, 1), there exists d∗ = d∗(c,m,Ω) > 0 such that (i) for d2 ∈ (0, d∗),

(θd1, 0) is unstable for any d1 > 0; (ii) for d2 > d∗, (θd1, 0) changes stability
at least twice as d1 increases from 0 to d2.

Note that the above theorem holds regardless of the specific value b > 0. The
most interesting case is where c∗ < c < 1 and d2 > d∗, where we have the following
implications:

(i) If b > 1, it is well known that without dispersal, species v always drives species
u to extinction. However, with dispersal, for some ranges of dispersal rates,
species v may fail to invade when rare.

(ii) If b < 1, it is well known that, without dispersal, species u and v always coexist.
Surprisingly, for certain dispersal rates, species u is able to drive species v to
extinction for arbitrary initial conditions. (See Theorem 1.9 of [37].)

Proof We sketch the main ideas in the proof of Theorem 8.10. The stability of
(θd1, 0) is determined by the sign of the smallest eigenvalue, denoted by λ1, of the
problem

{
d2�ϕ + (m− cθd1)ϕ + λϕ = 0 in �,
∇ϕ · n = 0 on ∂�.

(8.48)

Note that λ1 = σ1(d2,m− cθd1). More specifically, (θd1, 0) is stable if λ1 > 0 and
unstable of λ1 < 0. To determine the sign of λ1, we observe that λ1 is a strictly
increasing function of d2, and that

lim
d2→0

λ1 = min
�̄
(cθd1 −m) ≤ min

�̄
(θd1 −m) < 0; (8.49)

lim
d2→+∞ λ1 =

∫

� θd1

|�|
(

c −
∫

� m∫

� θd1

)

. (8.50)

Set

c∗ = inf
d1>0

∫

�
m

∫

�
θd1

.

By Theorem 8.6, we see that c∗ ∈ (0, 1).
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For every c ∈ (0, c∗) and any d1 > 0, limd2→+∞ λ1 ≤ 0. Since λ1 is strictly
increasing in d2, we see that λ1 < 0 for any d1, d2 > 0. This proves part (a).

For every c ∈ (c∗, 1), for simplicity assume that there exist two positive constants
d < d such that c − ∫

�
m/

∫

�
θd1 > 0 for d1 ∈ (d, d), and c − ∫

�
m/

∫

�
θd1 < 0

for d1 ∈ (0, d) ∪ (d,+∞). Define d∗ = d∗(d1) := 1/λ1(m− cθd1), i.e.,

d∗ = sup
ϕ∈S

∫

�
(m− cθd1)ϕ

2
∫

�
|∇ϕ|2 ,

where

S = {ϕ ∈ H 1(�) :
∫

�

(m− cθd1)ϕ
2 > 0}.

Now, d∗ = +∞ if and only if c− ∫

�
m/

∫

�
θd1 ≤ 0, i.e., d1 ∈ (0, d] ∪ [d,+∞). In

particular, d∗(d1) is finite when d1 ∈ (d, d), and that d∗(d1) → +∞ as d1 → d−
or d1 → d+. This allows us to define d∗ = infd1>0 d

∗(d1). For d2 < d∗, we have
d2 < d∗(d1) for all d1 > 0. In this case, Proposition 8.3(i) says that λ1 < 0 for all
d1 > 0, which implies that (θd1, 0) is unstable for any d1 > 0 and d2 < d∗. For
d2 > d∗, we likewise have λ1 < 0 for d1 ∈ (0, d) ∪ (d,+∞); and λ1 > 0 in some
sub-interval of (d, d). Therefore λ1 changes sign at least twice as d1 increases from
0 to d2, i.e., part (b) is proved. �
Exercise Prove that λ1 < 0 whenever c < 1 and d1 ≥ d2. [Hint: Observe that λ1 is
monotone increasing in c as well as in d2, and that λ1 = 0 when c = 1 and when d2
is increased to d1.]

For every c > 0, define

�c = {
(d1, d2) ∈ R

+ × R
+ : (θd1, 0) is linearly stable

}
. (8.51)

Note that�c ⊂ {(d1, d2) ∈ R
+ ×R

+ : d1 < d2} since, by the comparison principle
for principal eigenvalues, λ1 < 0 for d1 ≥ d2. Clearly, �c is non-empty if and only
if c > c∗.

In a series of important works [21–24], He and Ni classified the dynamics of a
class of Lotka–Volterra competition–diffusion models which include system (8.47)
as a special case. One of their results can be stated as follows:

Theorem 8.11 ([24]) If assumption (A3) holds and m(x) is non-negative, c ∈
(c∗, 1) and 0 < b ≤ 1, then (θd1, 0) is globally asymptotically stable for any
(d1, d2) ∈ Σc; if d2 ≥ d1 or (d1, d2) 
∈ Σc, then system (8.47) has a unique
positive steady state which is globally asymptotically stable.
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One key ingredient in the proof of Theorem 8.11 is the following lemma:

Lemma 8.2 If bc ≤ 1, then any positive steady state of (8.47), if exists, is linearly
stable.

Proof Let (u, v) be any positive steady state of (8.47). The linear stability of (u, v)
is determined by the sign of the principal eigenvalue, denoted by λ1, of the problem

⎧
⎨

⎩

d1�ϕ + ϕ(m− 2u− bv)− buψ + λ1ϕ = 0 in �,
d2�ψ − cvϕ + ψ(m− cu− 2v)+ λ1ψ = 0 in �,
∇ϕ · n = ∇ψ · n = 0 on ∂�.

(8.52)

As ϕ,ψ are eigenfunctions of λ1 and thus do not change sign in�, we may assume
without loss that ϕ > 0 and ψ < 0 in �̄. Set ϕ = uw and ψ = −vz. Thus w, z > 0
in �̄ and they satisfy

⎧
⎨

⎩

d1∇(u2∇w)− u3w + bu2vz + λ1 u
2w = 0 in �,

d2∇(v2∇z)+ cuv2w − v3z + λ1v
2z = 0 in �,

∇w · n = ∇z · n = 0 on ∂�.
(8.53)

Multiplying the equation of w by w2 and integrating the result in �, we have

−2d1

∫

�

u2w|∇w|2 −
∫

�

(uw)3 + b

∫

�

(uw)2(vz)+ λ1

∫

�

u2w3 = 0.

If λ1 ≤ 0, then we have

∫

�

(uw)3 < b

∫

�

(uw)2(vz).

By Hölder inequality,

∫

�

(uw)3 < b

[∫

�

(uw)3
]2/3 [∫

�

(vz)3
]1/3

,

which implies that

∫

�

(uw)3 < b3
∫

�

(vz)3. (8.54)

Similarly, if λ1 ≤ 0, by the equation of v and similar argument we have

∫

�

(vz)3 < c3
∫

�

(uw)3, (8.55)

Clearly, (8.54) and (8.55) are in contradiction with bc ≤ 1. Hence, λ1 > 0. This
completes the proof. �
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By Theorem 8.11, the parameter region where species u wins is characterized by
the closure of the set�c. By a previous exercise, we have seen that,�c ⊂ {d1 ≤ d2},
i.e., species umay exclude species v only if u is the slower diffuser. Furthermore, by
Theorem 8.10, the set �c is non-empty for every c ∈ (c∗, 1). It is not difficult to see
that �c1 ⊂ �c2 for any c1 < c2 with c1, c2 ∈ (c∗, 1). In fact, the set �c converges
to the set {(d1, d2) : 0 < d1 < d2} as c → 1−, and this gives another perspective
upon why the slower diffuser wins the competition for the case when b = c = 1.
We refer to the next section for more details on the evolution of slow dispersal.

8.4 Evolution of Dispersal

It is an important question in spatial ecology to understand which patterns of dis-
persal can confer some selective or evolutionary advantage. Unconditional dispersal
refers to movement which does not depend on habitat quality or population density.
For the evolution of unconditional dispersal in the context of reaction–diffusion
models, it was shown that slower dispersal rate is selected when the environment
is spatially heterogeneous but temporally constant; see [16, 20]. In contrast, for
unconditional dispersal in spatially and temporally varying environments faster
dispersal rates may be selected in diffusion models [26]. In this section we focus on
the evolution of unconditional dispersal in spatially varying but temporally constant
environments.

Consider system (8.47) for the case when b = c = 1:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d1�u+ u[m(x)− u− v] in �× (0,∞),

vt = d2�v + v[m(x)− u− v] in �× (0,∞),

∇u · n = ∇v · n = 0 on ∂�× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in �.

(8.56)

The following result was established in [16]:

Theorem 8.12 Suppose that (A3) holds. If 0 < d1 < d2, then the semi-trivial
steady state (θd1, 0) of (8.56) is globally asymptotically stable among all solutions
with non-negative and non-trivial initial data.

Theorem 8.12 is surprising: when d1 = d2 = 0, two species will coexist since
they are identical. However, if the diffusion rates are positive for both species, the
slower diffuser always outcompetes the faster one. This also shows that the PDE
dynamics cannot be predicted by the ODE dynamics in this case.

Proof We first prove the instability of (0, θd2), which is determined by the sign of
the smallest eigenvalue, denoted by λ1 := λ1(d1, d2), of

{
d1�ϕ + (m− θd2)ϕ + λ1ϕ = 0 in �,
∇ϕ · n = 0 on ∂�.

(8.57)
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Note that λ1(d1, d2) = σ1(d1,m−θd2) and hence it is monotone increasing in d1. We
may normalize ϕ such that ϕ > 0 and

∫

� ϕ
2 = 1. Denote ϕ′ = ∂ϕ

∂d1
and λ′

1 = ∂λ1
∂d1

.
Differentiating the equation of ϕ with respect to d1, multiplying the result by ϕ and
integrating in �, we have

∫

�

ϕ[�ϕ + d1�ϕ
′ + (m− θd2)ϕ

′ + λ′
1ϕ + λ1ϕ

′] = 0,

from which we obtain λ′
1 = ∫

�
|∇ϕ|2 > 0. Hence, λ1 is strictly increasing in d1.

Since λ1(d2, d2) = 0 (where ϕ = θd2/‖θd2‖L2(�)), we see that λ1 < 0 if and only if
d1 < d2.

Next, we claim that

lim sup
t→∞

v(x, t) ≤ θd2(x). (8.58)

To establish our assertion, note that

vt = d2�v + v(m(x)− u− v) ≤ d2�v + v(m(x)− v).

Consider

⎧
⎨

⎩

Vt = d2�V + V (m− V ) in �× (0,∞),

∇V · n = 0 on ∂�× (0,∞),

V (x, 0) = v(x, 0) in �̄.
(8.59)

By the comparison principle of parabolic equations [48], v(x, t) ≤ V (x, t). Thus

lim sup
t→∞

v(x, t) ≤ lim sup
t→∞

V (x, t) = θd2(x).

Therefore, for each ε > 0, there exists T1 := T1(ε) such that for t ≥ T1 and x ∈ �̄,

v(x, t) ≤ (1 + ε)θd2(x).

Consider next the solution (U(x, t), V (x, t)) of

⎧
⎪⎪⎨

⎪⎪⎩

Ut = d1�U + U(m(x)− U − V ) in �× [T1,∞),

Vt = d2�V + V (m(x)− U − V ) in �× [T1,∞),

∇U · n = ∇V · n = 0 on ∂�× [T1,∞),

U(x, T1) = δϕ, V (x, T1) = (1 + ε)θd2 in �̄.

(8.60)

We check that (δϕ, (1 + ε)θd2) is a pair of sub-super solution of (8.60) as follows:

d2�[(1 + ε)θd2] + (1 + ε)θd2(m− δϕ − (1 + ε)θd2)

= (1 + ε)[d2�θd2 + θd2(m− θd2)− (δϕ + εθd2)θd2] ≤ 0
(8.61)
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and

d1�(δϕ)+ δϕ
[
m− δϕ − (1 + ε)θd2

]

= δ
[
d1�ϕ + ϕ(m− θd2)+ ϕ(−δϕ − εθd2)

]

= δϕ
[−λ1 − δϕ − εθd2

] ≥ 0,
(8.62)

since λ1 < 0 and δ, ε are chosen small.
By the comparison principle for two-species competitive systems, we see that

U(x, t) is increasing in t and V (x, t) is decreasing in t . Therefore (U(x, t), V (x, t))
converges, as t → ∞, to some limit (U∗(x), V ∗(x)). By the elliptic regularity
theory we can show that (U∗(x), V ∗(x)) is a non-negative steady state of (8.56),
with U∗ > 0.

We claim that V ∗ ≡ 0. If not, then (U∗, V ∗) is a positive steady state of (8.56),
i.e., they satisfy

⎧
⎨

⎩

d1�U
∗ + U∗(m(x)− U∗ − V ∗) = 0 in �,

d2�V
∗ + V ∗(m(x)− U∗ − V ∗) = 0 in �,

∇U∗ · n = ∇V ∗ · n = 0 on ∂�.
(8.63)

Consider the smallest eigenvalue, denoted by λ1(d), of the eigenvalue problem

d�ϕ + (m− U∗ − V ∗)+ λϕ = 0 in �, ∇ϕ · n = 0 in ∂�.

Sincem is non-constant, one can show thatm−U∗−V ∗ is also non-constant. Hence,
λ1(d) is strictly increasing in d . By the equation of U∗, we see that λ1(d1) = 0 with
corresponding ϕ = U∗. Similarly from the equation of V ∗ we get λ1(d2) = 0,
which is a contradiction, since d1 
= d2.

Hence, V ∗ = 0 andU∗ = θd1 , i.e., limt→∞(U(x, t), V (x, t)) = (θd1, 0).Choose
δ, ε small such that U(x, T1) = δϕ ≤ u(x, T1) and v(x, T1) ≤ (1 + ε)θd2 =
V (x, T1). By the comparison principle for two-species competition systems, we
have U(x, t) ≤ u(x, t) and v(x, t) ≤ V (x, t). In particular, v(x, t) → 0 as
t → ∞ and lim inft→∞ u(x, t) ≥ θd1(x). Since, by repeating the previous
argument for (8.58), one can also show that lim supt→∞ u(x, t) ≤ θd1(x), we have
limt→∞ u(x, t) = θd1 . This completes the proof. �

Consider k-species competition model

{
ui,t = di�ui + ui(m− ∑k

i=1 ui) in �× (0,∞),

∇ui · n = 0 on ∂�× (0,∞).
(8.64)

A challenging open problem is whether the slowest diffuser still wins the
competition in the context of k competing species with k ≥ 3.

Open Problem Suppose that m is positive, non-constant, and continuous in �̄. If
0 < d1 < d2 < . . . < dk and k ≥ 3, is (θd1, 0, . . . , 0) globally asymptotically stable
among all positive initial data?
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The mathematical difficulty in solving this open problem is that competition
models for three or more species are not monotone dynamical systems.

8.5 Persistence and Competition in Advective Environments

In this section we consider the persistence of a single species and the competition of
two populations in advective environments. We will focus on the effects of advection
and boundary conditions on the persistence and competition of populations.

8.5.1 Single Species in Advective Environment

How can populations persist in streams when they are constantly washed down-
stream? This question, termed as the “drift paradox” in the literatures, has received
considerable attention. Speirs and Gurney [52] offered an explanation based upon
the diffusive movement of organisms, and they considered the following reaction–
diffusion model:

⎧
⎪⎪⎨

⎪⎪⎩

ut = duxx − qux + u(r − u), for 0 < x < L, t > 0,
dux(0, t)− qu(0, t) = 0, for t > 0,
u(L, t) = 0, for t > 0,
u(x, 0) = u0(x), for 0 < x < L,

(8.65)

where u(x, t) denotes the population density at location x and time t , d is the
diffusion rate, L is the size of the habitat, and in the sequel, we call x = 0 the
upstream end and x = L the downstream end. The constant q is the effective
speed of the current (sometimes we also call q the advection speed/rate, and we
remark here that q is positive since x = L is defined to be the downstream end).
The constant r > 0 accounts for the intrinsic growth rate, which indicates the
spatial homogeneity of the environment. We assume that u0 is non-negative and
not identically zero, and d, r, q, L are all positive constants. In other words, the
spatial heterogeneity of the problem (8.65) is introduced solely by the drift and the
boundary conditions.

Speirs and Gurney [52] studied the local stability of steady state u = 0 and
concluded that it is unstable if and only if q <

√
4dr and L > L∗, where

L∗ = 2d
π − arctan

(√
4dr−q2

q

)

√
4dr − q2

.
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That is, the persistence is only possible when advection is slow relative to diffusion
and the stream is long enough. It is natural to inquire whether such predictions
still hold for other situations. To this end, Vasilyeva and Lutscher [53] considered
the following single species problem with a different boundary condition at the
downstream end x = L. Their model is given by

⎧
⎪⎪⎨

⎪⎪⎩

ut = duxx − qux + u(r − u), for 0 < x < L, t > 0,
dux(0, t)− qu(0, t) = 0, for t > 0,
ux(L, t) = 0, for t > 0,
u(x, 0) = u0(x), for 0 < x < L.

(8.66)

The following result, which is similar in nature to the result of Speirs and Gurney,
was proved in [53]:

Theorem 8.13 The species can persist if and only if q <
√

4dr and L > L∗∗,
where

L∗∗ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2d
arctan

q

√
4dr−q2

2rd−q2√
4dr−q2

for 0 < q ≤ √
2dr,

2d
π+arctan

q

√
4dr−q2

2rd−q2√
4dr−q2

for
√

2dr < q <
√

4dr.

(8.67)

Proof The stability of u = 0 is determined by the sign of λ1, the smallest eigenvalue
of the eigenvalue problem

{
dϕxx − qϕx + rϕ + λ1ϕ = 0, for 0 < x < L,

dϕx(0)− qϕ(0) = ϕx(L) = 0.
(8.68)

Set ϕ = eqx/(2d)ψ . Then

{

dψxx + ψ(− q2

4d + r + λ1) = 0, for 0 < x < L,

ψx(0)− q
2dψ(0) = ψx(L)+ q

2d ψ(L) = 0.
(8.69)

Thus

ψ(x) = A cos(

√
4d(r + λ1)− q2

2d
x)+ B sin(

√
4d(r + λ1)− q2

2d
x).

As a consequence of the boundary conditions of ψ , we have

A = B

√
4d(r + λ1)− q2

q
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and

A
−
√

4d(r+λ1)−q2

2d sin(
√

4d(r+λ1)−q2

2d L)+ B

√
4d(r+λ1)−q2

2d cos(
√

4d(r+λ1)−q2

2d L)

+ q
2d [A cos(

√
4d(r+λ1)−q2

2d L)+ B sin(
√

4d(r+λ1)−q2

2d L)] = 0.
(8.70)

Combining these two equations and using (A,B) 
= (0, 0), we obtain

tan(

√
4d(r + λ1)− q2

2d
L)

[q

d
− 2(r + λ1)

q

] +
√

4d(r + λ1)− q2

d
= 0.

Set λ1 = 0, then

tan(

√
4dr − q2

2d
L∗∗) = q

√
4dr − q2

2rd − q2 ,

where L∗∗ is the critical length given by (8.67) so that λ1 < 0 when L > L∗∗; and
λ1 > 0 when L < L∗∗. This finishes the proof. �

It is natural to consider more general boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

ut = duxx − qux + u(r − u), for 0 < x < L, t > 0,
dux(0, t)− qu(0, t) = 0, for t > 0,
dux(L, t) − qu(L, t) = −bqu(L, t), for t > 0,
u(x, 0) = u0(x), for 0 < x < L.

(8.71)

Here the (non-negative) parameter b measures the rate of population loss at the
downstream end x = L caused by the drift [38].

It is shown in [41] that the species can persist if and only if q < q∗ andL > L∗∗∗,
where

q∗ =
⎧
⎨

⎩

√
dr

b(1−b) 0 < b ≤ 1
2 ;

√
4dr b ≥ 1

2 ,

and L∗∗∗ is an explicit function of d, r, q, b. (See Lemmas 2.1 and 2.2 of [41] for
details.) It is interesting to see that the critical value q∗ depends on b only for b ≤ 1

2 ,
while for b ≥ 1

2 , q∗ = √
4rd is the minimal traveling wave speed for the Fisher-KPP

equation in the whole real line.

Exercise

(i) Show that L∗∗, given in (8.67), is a strictly decreasing function of d .
(ii) Prove that there exists some d∗ > 0 such that L∗ is decreasing for d < d∗ and

increasing for d > d∗. What is the biological interpretation of this result?
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8.5.2 Evolution of Faster Dispersal

When the movement of organisms is subject to external forces such as river flow,
how should species disperse to avoid the invasion of a mutant species with different
movement strategies? In this subsection we consider a two-species competition
model in an open advective environment: Individuals are exposed to unidirectional
flow, with a net loss of individuals at the downstream end. We assumed that two
species have the same advection rates but different dispersal rates. More specifically,
we consider
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = d1uxx − qux + u(1 − u− v), 0 < x < L, t > 0,
vt = d2vxx − qvx + v(1 − u− v), 0 < x < L, t > 0,
d1ux(0, t)− qu(0, t) = d2vx(0, t)− qv(0, t) = 0, t > 0,
ux(L, t) = vx(L, t) = 0, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), 0 < x < L.

(8.72)

Theorem 8.14 ([38]) If d1 > d2, then the semi-trivial steady state (u∗, 0),
whenever it exists, is globally asymptotically stable among non-negative and non-
trivial solutions of (8.72), where u∗ > 0 is the unique positive solution of

{
d1u

∗
xx − qu∗

x + u∗(1 − u∗) = 0, 0 < x < L,

d1u
∗
x(0)− qu∗(0) = u∗

x(L) = 0.
(8.73)

Theorem 8.14 implies that in an open advective environment, unidirectional
flow can put slow dispersers at a disadvantage and higher dispersal rates are being
selected. In particular, in a homogeneous advective environment with the free-flow
boundary condition at the downstream end, a population with higher dispersal rate
will always displace one with lower dispersal rate. We refer to [12, 13, 17, 33, 42–
45, 54–56] for recent developments.

In the following we illustrate that (u∗, 0) is stable for d1 ≈ d2, d1 > d2, and
unstable for d1 ≈ d2, d1 < d2. This implies that a mutant can invade when rare if
and only if it has the larger dispersal rate. In terms of the adaptive dynamics theory,
the joint effects of small mutation and selection will tend to increase the average
diffusion rate of the species.

The stability of (u∗, 0) is determined by the sign of the smallest eigenvalue,
denoted by λ1 = λ1(d1, d2), of the problem

⎧
⎨

⎩

d2ϕxx − qϕx + (1 − u∗)ϕ + λ1ϕ = 0, 0 < x < L,

d2ϕx(0)− qϕ(0) = ϕx(L) = 0,
ϕ > 0 in (0, L).

(8.74)
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Lemma 8.3 Let λ1 be the principal eigenvalue of (8.74). Then

∂λ1

∂d2

∣
∣
∣
∣
d2=d1

=
∫ L

0 (e
− q
d1
x
u∗)xu∗

xdx
∫ L

0 e
− q
d1
x
(u∗)2dx

< 0.

In particular, for d1 ≈ d2, (u∗, 0) is stable if d1 > d2, and unstable if d1 < d2.

Proof We first calculate ∂λ1
∂d2

. Denote ϕ′ = ∂ϕ
∂d2

and λ′
1 = ∂λ1

∂d2
, and differentiate the

equation of ϕ with respect to d2, we obtain

{
d2ϕ

′
xx + ϕxx − qϕ′

x + (1 − u∗)ϕ′ + λ′
1ϕ + λ1ϕ

′ = 0, 0 < x < L,

d2ϕ
′
x(0)+ ϕx(0)− qϕ′(0) = ϕ′

x(L) = 0.
(8.75)

Multiplying the first equation of (8.75) by e−(q/d2)xϕ, the first equation of (8.74) by
e−(q/d2)xϕ′, subtracting and integrating the result in (0, L), we have

λ′
1

∫ L

0
e−(q/d2)xϕ2 −

∫ L

0

(
e−(q/d2)xϕ

)

x
ϕx = 0.

When d2 = d1, we have λ1 = 0 and ϕ = Cu∗ for some positive constant C. Thus

∂λ1

∂d2
|d2=d1 =

∫ L
0 (e

− q
d1
x
u∗)xu∗

xdx
∫ L

0 e
− q
d1
x
(u∗)2dx

. (8.76)

We claim that u∗ < 1 for 0 ≤ x ≤ L. This follows directly from the fact that, for
each constant C ≥ 1, u = C is a strict super-solution for the equation of u∗.

Next we show that u∗
x > 0 for 0 ≤ x < L. Since u∗

x(L) = 0 and u∗ < 1, by the
equation of u∗ we see that u∗

xx(L) < 0. Hence, there exists some δ > 0 such that
u∗
x > 0 in [L − δ, L). To prove u∗

x > 0 in [0, L), we argue by the contradiction. If
not, we may assume that there exists some x1 < L− δ such that u∗

x > 0 in [x1, L)

and u∗
x(x1) = 0. Set w = u∗

x/u
∗. Then w satisfies

d1wxx +wx(2w − q) = u∗w (8.77)

in (0, L) and w(x1) = w(L) = 0, w > 0 in (x1, L). Therefore, there exists
some x2 ∈ (x1, L) such that w(x2) = maxx1≤x≤L w(x). Hence, wx(x2) = 0 and
wxx(x2) ≤ 0, which contradicts (8.77). This proves u∗

x > 0 for x ∈ [0, L).
By the assertion u∗ < 1 we have d1u

∗
xx − qu∗

x < 0 in (0, L). Hence, d1u
∗
x − qu∗

is strictly decreasing. Since d1u
∗
x(0) − qu∗(0) = 0, then d1u

∗
x − qu∗ < 0 for

0 < x ≤ L. Therefore, (e−(q/d1)xu∗)x = e−(q/d1)x(u∗
x − q

d1
u∗) < 0. This, together

with u∗
x > 0 in [0, L) and (8.76), shows that ∂λ1

∂d2
< 0 when d2 = d1. The proof is

complete. �
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The boundary condition appears to play an important role in the outcome of
evolution. In a homogeneous advective environment with the free-flow boundary
conditions, larger dispersal rates evolve. In contrast, numerical simulations sug-
gest that in a homogeneous advective environment with more hostile boundary
conditions, there seems to evolve a unique, intermediate dispersal rate, which is
evolutionarily stable. To be more specific, consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx − qux + u(1 − u− v), for 0 < x < L, t > 0,
vt = d2vxx − qvx + v(1 − u− v), for 0 < x < L, t > 0,
d1ux(0, t)− qu(0, t) = d2vx(0, t)− qv(0, t) = 0, for t > 0,
d1ux(L, t) − qu(L, t) = −bqu(L, t), for t > 0,
d2vx(L, t) − qv(L, t) = −bqv(L, t), for t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), for 0 < x < L.

(8.78)

For b ∈ [0, 1], it is shown in [38, 41] that if d1 > d2, then (u∗, 0), whenever
it exists, is globally asymptotically stable, i.e., the faster dispersal rate is always
selected. For b ≥ 3/2, we have the following conjecture:

Conjecture Suppose that b ∈ [ 3
2 ,+∞]. Then there exists some d∗ > 0 such that

if d2 < d1 ≤ d∗ or d∗ ≤ d1 < d2, then (u∗, 0), whenever it exists, is globally
asymptotically stable, where u∗ > 0 satisfies

⎧
⎨

⎩

d1u
∗
xx − qu∗

x + u∗(1 − u∗) = 0, for 0 < x < L,

d1u
∗
x(0)− qu∗(0) = 0,

d1u
∗
x(L)− qu∗(L) = −bqu∗(L).

(8.79)

The d∗ above is a special case of an evolutionarily stable strategy (ESS) in the
evolution game theory, i.e., an ESS is a strategy which, if adopted by a population
in a given environment, cannot be invaded by any alternative strategy that is initially
rare. When b ∈ [0, 1], we can regard d∗ = +∞, i.e., +∞ is an ESS.

8.6 Conclusion

In this chapter we studied some reaction–diffusion models in spatial ecology. Topics
covered include the logistic model for a single species and related issues, two-
species Lotka–Volterra competition models in homogeneous and heterogeneous
environments, the persistence and competition in advective environments, and the
evolution of dispersal in heterogeneous and advective environments. We introduced
some basic tools for reaction–diffusion equations and systems, including the super-
solution and sub-solution method, the variational principle for principal eigenvalues,
Lyapunov functionals, the comparison principles for parabolic equations and sys-
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tems. We also presented some mathematical problems, ranging from elementary
exercises to open research questions. In the following we discuss several recent
works and point interested readers to relevant references:

In [46] Nagahara and Yanagida proved that the optimal control m∗ of the
functional J (see (8.33) in subsection 2.4) is of the “bang-bang” type, i.e., there
exists a measurable set E ⊂ � such that m∗ = 1 in E and m∗ = 0 in the
complement of E. This answers a conjecture of Ding et al. [15] affirmatively.

We recall that θ(·, d) is the unique positive solution of (8.30). An open problem
is whether maxx∈�̄ θ(x, d) is monotone decreasing in d . Such question came from
the study of predator–prey systems in heterogeneous environments [39]. If � is an
interval and m is monotone, then maxx∈�̄ θ(x, d) is monotone decreasing in d; see
[35], which extended an earlier result in [39]. However, the question remains open
for general� and m.

In [49] Perthame and Souganidis considered an integro-PDE model for a
population structured by the spatial variables and a continuous trait variable which
is the diffusion rate. Such model can be viewed as the extension of the competition
model (8.56) from two-phenotypes to infinitely many phenotypes. It is shown in
[49], and independently in [32], that in the limit of small mutation rate, the unique
steady state solution forms a Dirac mass in the trait variable, supported at the
smallest possible diffusion rate. This echoes the result of Dockery et al. in [16], i.e.,
the slowest diffusion rate is favored. We refer to [19, 31] for further development.

For system (8.78), the species can persist if and only if q < q∗ and L > L∗∗∗
(Lemmas 2.1 and 2.2 of [41]). We proved in [18] that if 0 < b ≤ 3/2, then L∗∗∗ is
strictly decreasing in d; if b > 3/2, then L∗∗∗ decreases in d first and then increases
in d . This reveals a dramatic difference between b < 3/2 and b > 3/2. Our
preliminary analysis of system (8.78) suggests that the conclusion of Theorem 8.14,
which states that the faster diffuser can always competitively exclude the slower
diffuser, may fail for some 1 < b < 3/2, i.e., the faster dispersal rate may not
be selected. This is in strong contrast to the case 0 ≤ b ≤ 1 for which the faster
dispersal rate is always selected [38, 41].

In conclusion, the materials presented in this chapter illustrate some interesting
questions in spatial ecology and evolution. Such questions are, on the one hand, well
connected with important issues in biology, and on the other hand, deeply rooted in
mathematics and bringing new and exciting challenges.
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